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RAREFIED-GAS HEAT TRANSFER BETWEEN PARALIEL PIATES BY A MONTE CARLO METHOD
by Morris Perlmutter

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

The problem of rarefied-gas heat transfer between parallel plates is treated by a Monte Carlo pro-
cedure. Hard-sphere molecule collisions are assumed. The distributions of target molecules are assumed to;
be locally Maxwellian, with thermal velocity and density varying across the channel. The temperature,
density, end heat transfer are found for flow conditions ranging from Knudsen numbers of 0.05 to the free-
molecule regime for a wall-temperature ratio of 1 to 4. The present results were compared with the results
of another Monte Carlo solution obtained by using a different method and were found to agree with those
results; they were also compared with other analytical solutions. The present results also agreed with the
results obtained from a continuum solution with slip boundaries except that the continuum conductivity was
too high for the larger Kmudsen number cases.

AUSZUG

Die Frage der Wermeilbertragung in verdlinntem Gas zwischen parallelen Platten wird mit Hilfe einer
Monte-Carlo Methode behandelt. Zusammenstsse von Hartspharemmolekillen werden angenommen. Es wird
vorsusgesetzt dass die Beschussmoleklile Ortlich eine Maxwellverteilung haben und dass die thermische
Geschwindigkeit und Dichte im Querschnitt veranderlich sind. Die Methode liefert die Temperatur, Dichte
und Warmeubertragung flir Stromungsbedlngungen, die zwischen Knudsenzahlen von 0.05 und dem freien
Molekulfluss flir ein Verhaltnis von Wand zu Temperatur bei 1 : k4 liegen. Die vorliegenden Ergebnisse
werden mit den Resultaten einer anderen Monte-~CarlolBsung unter Verwendung einer unterschiedlichen Methode
verglichen und stimmten mit diesen Resultaten Uberein; sie wurden auch noch mit anderen analytischen LOs-
ungen verglichen. Die gegenwirtigen Resultate waren auch im G1e1chklang mit durch eine Kont;muumlosung
mit Gleitlinien erhaltenen Ergebnisse aber die Kontinuumleitf&higkeit war zu hoch in Fdllen mit grosseren
Knudsenzahlen,

AHHOTAIINA

HecnelyeTca Temlomepelava pPaspPeXeHHHM Ta30M MexLy NapajelbHHME IAACTHHAME CIOCOGOM
Monre-Kapino. lipezmonoraerca coyzapeHHe XECTKHX COEPHUSCKHUX MOAEKYA. IIPHHATO MeCTHOE MaKC—

BEJJOBCKOE pacnpeielieHHe MOJEKYJN MHUIEHH C IePEMeHHOIl CKOpPOCTHH TEIJOBOI'0 IBUKEHUA U
TepeMeHHO} NIOTHOCTLO NOUEepeK Xanaia. TemnepaTypa, UIOTHOCTH M Teloneperava HaWLeHW RJIA
pexuMa obTekaHHHMA ¢ unucaaMe Keyzcena raumead oT 0.05 no pewxuma OO6TeKaHUA CO CBOGOIHHIMHU
MOJIEKyJnaMH NPH 3HAYEHHAX KodddunueHTa "crTena-rTemnepaTypa" or 1 mo 4. PesyabTaTtH Guin cpas-
HEHH C pe3yJbTaTaMH DeNeHUA NMOJYUEHHOrO Ipyr¥M cmocoboM Moure-Kapno M oxasanrucr C HHUMH B
coryacun. PesynpTaTH Takke OHIM CPABHEHH C APYTHMH aHAJUTHUECKHMM pemeHMAMH. OHH Takke B
COrJlacuu ¢ Pe3yALTATAME NOJYYESHHHMH AJIA CIJIONHO® CpelH C TpPaHWNaMKH CKOJARREHUA; HO TIPOBOJNH-
MOCTb CHJOWHOH CpelH OKaszaJaCh UPEe3MEpPHO BHCOKOH anaa cayuaeB ¢ 6oJlee BHCOKMMHM UYUCJIAMH

Kuyncena.

INTRODUCTTION

In rarefied-gas transport problems, the
Navier-Stokes' equation for momentum transfer or
the Fourier equation for conduction are no longer
applicable because these equations assume local
isotropy and smaell gradients compared with the
path lengths of the molecules. Therefore, the
more fundemental Boltzmann equation must be re-
sorted to. This equation is difficult to treat by
the usual enalytical procedures because of its
complexity.

Most of the analyses of rarefied-gas heat
transfer have been for the linearized problem, As
yet, few nonlinear results have been published.
The present analysis of heat transfer between par-
allel plates at different temperatures enclosing a
rarefied gas with hard-sphere molecule collisions
is by a Monte Cerlo procedure. This method re-
duces the complexity of the analysis thereby
avoiding many of the simplifying assumptions gen-
erally made in the usual analytical procedures but
at the expense of added numerical computations.

A linearized solution to the problem of heat
transfer between parallel plates enclosing a hard-
sphere gas was analyzed by Gross and Ziering [1]. 1
They assume the difference in wall temperature was
small compared to the magnitude of the wall temper=-
atures so that the problem can be described by the
linearized Boltzmann equation. The distribution
function was then approximasted by half-range poly-
nomiels in velocity space and the space-dependent
coefficient were determined by forming half-range
moment equations.

The nonlinear problem was treated by Lavin
and Haviland [2] for hard-sphere molecule colli-
sions by using Lee's moment method. This method
consists of choosing a distribution of molecular
velocities in the form of half Maxwellians that
contain a number of functions related to the local
density and thermal velocity. A sufficient number
of moment equations are then solved to determine
these functions. Haviland and Lavin have also
treated this problem by a Monte Carlo procedure

lNunbers in brackets denote references.
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[3], [4], and [5]). The major difference between
the present analysis and that of Haviland and
Tavin is in the methods of choosing target-
molecule collision partners and evaluating the
local mean properties.

The Monte Carlo Procedure

The Monte Carlo procedure is a model sampling
technique. A model is created and histories of
sample molecules are followed through this model
by meking choices at points of decision from the
appropriate probability distribution. By averag-
ing certain properties of the sample molecules at
various positions, macroscopic quantities of in-
terest can be obtained.

The model is shown in Figure 1. The wall at
X of O 1is considered to be at temperature
Tw,O and the other wall at x, of D is at tem-
perature Tw,l‘ A rarefied, hard-sphere molecule
gas is contalined between the walls.

The sample molecule history is started at
wall O by picking its velocity components from
the appropriate distribution of velocities of the
absorbed and reemitted molecules. The space be-
tween the walls is divided into zones as shown in
Figure 1. The sample molecule, after leaving the
wall, will either pass through the first zone or
will have a collision with a target molecule in
this zone. This will depend on whether the path
length to collision for the sample molecule is
longer or shorter than the distance the sample
molecule must travel to pass through the zone. If
the sample molecule passes through the first zone
with no collision, it is started again at the be-
ginning of the next zone with its velocity compo-
nents unchanged.

If there is a collision in the zone, however,
the point of collision is found at the end of the
peth length to collision. 'The distribution of
target-molecule velocities is assumed to have the
form of a Maxwellian distribution throughout each
zone. The distribution of target-molecule colli-
sion partners is derived from this distribution of
target molecules. A target molecule is picked from
the distribution of target-molecule collision part-
ners in the zone. A collision calculation is car-
ried out for the sample- and target-molecule col-
lision partners, and new velocity components are
found for the sample molecules after collision.
The history of the sample molecule is then con=-
tinued from the point of collision with the new
sample-molecule velocity components. The collision
partner is ignored after collision for reasons dis-
cussed in [4].

A new path length to collision is found for
the sample molecule, and this is compared in length
with the distance from the point of collision to
the zone boundary. If the path length to collision
is greater, the sample molecule is started at the
beginning of the next zone with its velocity compo-
nents unchanged. In the other case, there is a
collision in the zone and the collision calcula=-
tions are repeated as before.

If the sample molecule strikes the wall at
X2 = D, it is absorbed and reemitted with new ve-
locity components picked from the appropriate dis-
tribution of velocities based on the temperature of
the wall. After leaving the upper wall it is fol-
lowed as before.

The transport and fluid characteristics of in-
terest are density distribution, temperature dis-
tribution, and heat transfer across the channel.

These can be obtained [6] by locating scoring posi~
tions at various locations across the channel (see
Fig. 1). By scoring the various characteristics of
the sample molecules as they pass the scoring cross
section, the transport properties and fluid charac-
teristics of interest can be obtained at these
scoring positions.

In the present analysis it was assumed that
the target molecules in each zone were in a
Maxwellian velocity distribution based on the local
temperature and density of each zone. From the
Monte Carlo solution based on this assumed distri=-
bution of target molecules, the temperature and
density at each scoring position are found. The
Monte Carlo solution is then rerun with the new
local temperature and density in the Maxwellian
distribution of target molecules. The problem was
iterated in this manner until the density and tem~
perature distribution found from the sample mole-
cule histories agreed with the density and temper-
ature distribution used for the target molecules.

In [3], [4], and [5], a Monte Carlo solution
is used to treat the present problem. That solu~

-tion is carried out with an assumed distribution of

target molecules in a tabular form. By scoring the
velocity components of many sample molecules as
they pass through each zone, the velocity distribu~
tion of the molecules in each zone can be obtained
in tabular form. These velocity distributions are
then used as the target-molecule distributions in
the next iteration. This process is continued un-
til the sample-molecule distribution found agrees
with the target-molecule distribution assumed.
Then, from the distributions in each zone, the
macroscopic quantities of interest can be found by
numerical integration of the moments of the dis-
tribution. This was carried out for one hard-
sphere-molecule case with a Knudsen number of 2

and a wall-temperature ratio of 1 to 4. In the
present method, it is not necessary to find and
store the entire distributions of target molecules
in each increment since the form of the target
molecule distribution is assumed.

In the present Monte Carlo solution, since the
collision partners are ignored, only conservation
of mass is satisfied exactly since molecules are
not allowed to "disappear" in transit between the
walls. Conservation of momentum and energy will
only be satisfied if the correct target molecule
distribution is assumed.

ANALYSTS

Velocity Components of Emitted Sample Molecule

The sample molecule history begins at the sur-
face at temperature T, g. It is assumed that the
molecules incident on the surface are perfectly
accommodeated; that is, they are in a Maxwellian
distribution at the wall, based on the wall tem-
perature. This assumption is discussed in [7].

In this case, the normalized Mexwellian velocity
distribution of the molecules moving away from the
wall Vo > 0 is given as

P 2p 2
20 r, a¥veh0  lexp cg avqavpavs| (1)

M 3/203
M’(/cw,o LAY V>0

The py o/M 1is the number density of molecules
moving &way from the wall, and Cy,0 1is the ther-
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mal velocity based on the wall temperature

[(Zk/M)Tw,o]l/z.

If we consider the positive x3 direction
normal to the wall, the distribution of velocities
of the molecules leaving the wall per unit time
per unit area is V2f+}0 ([4) and [8]). This dis-
tribution can be transformed to cylindrical coor=
dinates Vq = Vp cos 6, V, =V 29 Vz =V, sin @
and can be normelized by (Vz) = CW’O/\/E [4]
to give

Vot, odsv 2v,
£(8,V,,Vy) =

V., and © picked give the direc-
tion a.nd ve oc1ty of the sample molecule as it
leaves the wall. This same result was used in [4]
and [7]. Finally, V; and V3 can be obtained
from

Vz = V,. sin @; Vy =V, cos ® (7)

4
(V2>+,0 "Cq,0

The distributions for fgfy,fy. can be written
separately as

a8
fg d& = 38 Za
e 2 (sa)
2
2v V!
fy, ave = 22 exp -2_z ave (3b)
&,0 G0
2V,
fy  dVg = == expl-L-}|av, (3c)
r c2 0 2

2

The velocity components of our sample molecule
leaving the surface must be picked from these dis-
tributions. A convenient way of picking from a
distribution for the high-speed computer is to
transform the distribution to a uniform distribu-
tion in R by setting the random number R equal
to the cumulative distribution function. For

example,
8
®
R =-/0‘ fg 46 = = (4)

Then, by using a high-speed computer to gen-
erate a random number R between O and 1, & can
be obtained from Equation (4) such that for a
large nunber of samples picked in this manner, the
distribution in kquation (3a) will be satisfied.

Similarly, V, can be picked from

V2 v, vZ
Ry, = —= lexp[-——]|aVz (5)
2 c2 o2
0 w,0 W, 0,

Or, since picking R 1is equivelent to picking
1l -R,

Vz = (-05,0 1n Rv2>1/2 (6e)

so that by picking RV Vo can be obtained from
Equation (6).

The velocity V, 1is obtained in the same
manner and is given by

e (Eomn)? @

Vyp 40 AVp AV = fgfy fy 46 aVp 4V (2)

Calculation of the Path ILength A to Collision

The probability that a sample molecule will
collide in the incremental path length A to
AN+ dN 1is given in {8} as

exp( -7\/ }\s)

) = o (8)

where A, 1is the mean free path to collision of
the sample molecule moving at velocity Vg in
that zone.

A path length to collision for the sample
molecule from this distribution can then be chosen
by the same procedure described earlier.

A=A In By (9)

To use this relation, the mean free path Ay 1in
the zone must first be calculated.

As shown in Appendix A (Eq. (Al4)), the mean
free path of a sample molecule moving at velocity
Vg through a Maxwellian gas at density p with a
thermal velocity C is

21/2Kml

(10)
exp

-“s + ’erf u,\ 1" \‘I

ACH

where pg 1is the velocity of the sample molecule
nondimensionalized by the thermal velocity of the
zone (us = Vs/C). Equation (10) can then be used
in Equation (9) to obtain the distance to colli-
sion for the sample molecule in the zone.

Calculating New Sample-Molecule Velocity
Components After Collision

The distribution of velocities of the target
molecules colliding with the sample molecule is
given in Appendix B follows the derivation in [8].
From this distribution, the velocity components of
the target~-molecule collision partner as given by
Equation (Bl2) are chosen. The new velocity com-
ponents of the sample molecule after ecollision
with the target-molecule collision partner are
given, following the derivation in [4].
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1/2
Mg = L (V3 * Vag) * R - v%) & (118)
Vo = L (2 + V2r) + 2 vR(1 - 2b%) (11p)
A (-5
Vis =% (Vss + V) + VgL -®) = (11c)
where

= [(vls' Vlt)2+ (Vs - Vzt)2

211/2
+ (Vas = Vat) ] (114)
The values of H and = are obtained by picking
two rendom nuwbers that are used in the following
equations

H=2Ry-1 E=2Rz-1 and bP=HA+ = (12)

where b2 must be less then 1. If b2 1is
greater than 1, & new set of random numbers mst

be chosen to find H and =

Macroscopic Flow Properties

The macroscopic fluid characteristics needed
are density, temperature, and heat transfer across
the channel. Scoring positions are located at
various distances across the channel; as shown in
Figure 1. The average quantity of Q transported
across the scoring cross section p in the posi~
tive xp direction, can be written as

S
( 2 Q)p i (p+ f e, a3v) _ (o)), s
s+,p ( f V. f d5v)p (°+<Vz>+)P

where S " is the number of sample molecules
passing alross the scoring cross section p in
the positive xp direction and Q is some quan-
tity that each sample molecule carries. Simi-
larly, the average quantity @ transported in the

B A D LY SHRprIr S
usgavive x5 direcuion 1is

( S- >
Q 0 \'i
R (-0 (14)
-»P p_<Vz>_)P
Since there is no net flow across the channel
St,p = S-p (15a)
and
(p+ Vofy d3v)p = -(p_fvzf_ d3v)p (15b)
Hence,

s

s
(VR 3 A
P+,p0"22+,p  “+p P

The number of sample molecules that pass the
scoring cross section at p 1in the positive V,
direction, 8, P’ divided by the number of times

J

the sample molecule leaves wall O,N can be re-
lated to the mass flux passing in the positive Vz
direction at p by

S"’sz Py, p{ V)4

(17)
N pe 0040

where p, O(V) +,07 the mass flux leaving wall O,
is equal o Py, OCw o/:tl/2 [4]. Combining Eque-
tions (16) and 17) results in

p(VgQ) 2 E (18)

If Q 1is teken as 1/V,, Equation (18) becomes

s S_
C

p_ - w0 1) .1 (19)

0 anjz Z"z z :Vz

The average density in the chamnel is then ob-
tained by averaging the density of all the scoring
cross sections from p=0 to p = p.

Pl
A _ 11 °pe .
— =2 + L)+ 2. (20a)
fr,0 Pr|2 p+ 0 P40 - P+,0
P=

As shown in [4], the continuum solution, Kn -+ 0,
is given by

1/2
l+rT/ T

Y S AN

where rp = Tw,l/Tw,O'

The temperature can be obtained in a similer
manner. The undirected kinetic energy per unit
mass of a monatomic gas is equal to 1/2(kT/M)
times the degrees of freedom

glﬁm = %(vz) (21)

+ T

(20b)

From Equation (18), this can be written as

S, s.
Tv,0 38 Wnl/2c, Ve. Vz
p+,0 ’ P

where p/(p+ o) is given by Equation (19). As
shown in [4], the collisionless solution, Kn - w,

is given by
(
TV,O

) 1/2
Ko

= Iy (21a)

and the continuum solution, Kn - O, is given by
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.T_L - [1 - (1 - r;/z)x]2/3 (21b)

w,0

Finally, the heat transer across the channel
can be obtained from

1=8 (5 + )

. S+,p S.,p

This can be nondimensionalized by
2 3
2 [od 0% + V§)>]+,o = ;1175 (+,06%,0), ana then,

by using the p +/9A previously obtained, the fol-
lowing is found:

/ Si
1/2
—’IET a4 = 12 (V% + VE)
oy w,0 2NCw,O
S

=P
.Z (vg + VIZ.) (-p—:‘:g) (23-)

The heat transfer is then averaged across the
channel as in the case of the density (Eq. (20b)).
The heat transfer is compared to the collisionless
result as derived in [4]:

_—j_ﬁl/z = r.]l‘jz - rq (24a)

3
epCy 50,

and to the continuum solution as given by

Al

ol - 25 (1 - r%/z)Kn (24p)
p c3 64
A™w,0

RESULTS AND CONCLUSIONS

The temperature snd density distrib
sults are shown in Figure 2 for a Knudsen number
of 2 and wall-temperature ratios of 0.25 and 0.75.
These results are compared with the one case car-
ried out by the Monte Carlo procedure of [4] and
are in good agreement. The nonlinear moment solu-
tion results [2] have a significantly different
slope than the Monte Carlo results.

The linearized solution [1] is also compared
with the present results. For the smaller wall-
temperature difference case (Tw,l/Tw,O = 0.75),

the results agree with the linearized solution.
For the larger wall-temperature differences, how-
ever, where Tw,l/Tw,o = 0.25, the temperature is
different in magnitude from the present result,
although the shapes of the curve agree. In the
linearized solution the centerline temperature is
& parameter taken midway between the wall temper-
atures. The present results have their centerline
temperature significantly below this value for the
Knudsen number of 2; hence the large disagreement
between the results.

ution re-

Also shown in Figure 2 are the slip continuum
results. The continuum equations are solved by
using the fluid temperature (slip temperature)
near the walls rather than the wall temperatures
as the boundary temperature. By using the slip
temperatures that give the best fit to both the
temperature and density results from the present
solution, the results shown are obtained. These
results indicate that the slip continuum densities
and temperature curves agree well with the present
results. The present results show the magnitude
of the temperature slip between the wall and the
fluid near the wall as well as the Knudsen layer
where the fluid temperature near the wall deviates
from the continuum results toward the wall temper-
ature.

In Figure 3, the temperature and density re-
sults for a range of Knudsen numbers are shown.
These results are for a fixed value wall-
temperature ratio of 0.25. They agree with the
collisionless solution for the very large Knudsen
number and approach the continuum solution for the
values of the smaller Knudsen number. Figure 3
also shows the temperature and density distribu~
tion obtained from the aforementioned continuum
s1ip solutions.

In Figure 4, the heat flux nondimensionalized
by the continuum heat flux is plotted as a func-
tion of the inverse Knudsen number for the wall-
temperature ratio of 0.25. The Monte Carlo re-
sult of [4) was solved for the inverse Knudsen
nunber of 0.5 and found to agree with the present
results and with the linearized solution of [1].
The nonlinear solution gave results above the lin-
ear solution, while the present results Tell below
the linear solution for small Knudsen numbers.

Also shown in Figure 4 is the heat transfer
from the continuum solution with the slip boundary
conditions. The slip boundary heat transfer is
very high for larger Knudsen numbers, so that the
slip approximation does not apply near the colli-
sionless region. This could be because the noncon-
tinuum conductivity, which is the first term in
the series expension of the second approximation
in the Enskog method [4], is not appropriate in
the present noncontinuum case., The results of
Figure 4 indicate that if a conductivity lower
than the continuum conductivity is used in the
continuum solution with slip, the results would
be in good agreement with the present case.

In conclusion, the present result agrees with
the results obtained by the Monte Carlo method
(kn = 2, Tw,l/Tw,O = 0.25). The linear and the
nonlinear solutions disagreed somewhat with the
present result, This could be due partly to the
approximation made in the other analysis and
partly to the present assumption that the target
molecules locally are in a Maexwellian distribution,
The assumption of a local Mexwellian distribution
for the target molecules would be most applicable
near equilibrium conditions, that is, cases with
small temperature gradients and short mean free
paths. The present results are being extended to
the more realistic two-sided Maxwellian as was
used in [2].

The results indicate the continuum solution
with slip boundaries, if the slip can be properly
predicted, would give good results, except that
for the larger Knudsen numbers, the continuum con-
ductivity value is too high.

The Monte Carlo method seems to give reason-
able results for this problem. There are certain
drawbacks to the method, however. The error is
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reduced by running a large number of samples,
which run into large amounts of computing time.
The computing time needed for a sample molecule
was found to increase exponentially as the Knudsen
number approached zero. On the IBM 7094, typical
sample run times for 10,000 samples were: Xn = 5,
S minutes; Kn = 2, 6 minutes; Kn = 0.5, 10 min-
utes; Kn = 0.2, 15 minutes; Kn = 0.1, 25 minutes;
and Kn = 0,05, 45 minutes. However, for problems
of the present type, which are difficult to solve
by other methods without over simplifying assump-
tions, the present method proved very useful.

NOMENCLATURE
c average thermal velocity, (2kT/M) 1/2
D Channel height
X

2

erf(x) error function (2/v/%) f e qu
0
T probability distribution function
f+ f_ probability distribution function of
2

molecules moving in positive, nega-
tive Vp direction
Knudsen number N,/D = M/vZ SppD

Kn

k Boltzmenn constant
M

N

R random number between 0 and 1

T vall temperature ratio Tw,l/Tw,O
S mutual collision cross section xo
S+,S_ number of sample molecules through

scoring position in positive, nega-
tive Xy direction

T absolute temperature

v molecular velocity, 1/2
Vr radial velocity; (V‘% + V%) /
v* velocity after collision

X15Xp,X3  coordinates

defined by Egqs. (B6) and (B7)

defined by Egs. (B6) and (B7)

collision rate of sample molecule with
target molecules

path length to collision

mean free path length

dimensionless velocity, V/C
A defined by Eq. (All)

mass density

diameter of hard-sphere molecule

angle between sample-molecule and
target-molecule velocities

-GQ'O;T:U?JV O3 =
M

Subscripts:
mass of molecule
number of sample molecules leaving sur- A averaged
face 0 in Monte Carlo runm, pro?or- by increment nunber
tional to flux of molecules leaving Pe last increment
surface O .
P zone or scoring-position number R relative velocity
Pr last scoring-position number s sample molecule
ty of N 1 t target molecule
Q property of sample molecule w,05w,1 at wall 0,1
(@) averaged quantity f QFadv 0,1 evaluated next to wall 0,1
1,2,3 coordinate directions
(Q)+ averaged quantity Qf+d3V v +,- positive or negative direction
APPENDIX A

EVALUATION OF MEAN FREE PATH

The number of collisions per unit time d®©
of a sample molecule moving at velocity Vg
through target molecules in velocity volume space
d3Vt for hard-sphere molecules is given in [8] as

ae = pfths dsvt (Al)

where VR is the velocity of the target molecules
relative to the sample-molecule velocity before
collision, VR,i = Vg,1 = Vs,i, and S 1s the
mutugl-collision cross section noZ vhere ¢ 1is
the diameter of the molecule. The relative veloc-
ity VR can then be written as

2
Vg = [(Vlt - Vls)2 + (Vat - Vzo)
1/2
+ (Vs - VSS)?‘] (a2)

For a Maxwellian distribution of target mole-
cules, the collision rate cen be written as

2 2 2
Vg * Vo +Va

_ S
© i 2

X Vg dVpy dVpy DVgy (a3)

Then transforming varisble by a rotation, using
Bulerian angles as given in [9], yields

-] ¢
iy = AT3 Vi (Ade)
where
Vas Vig - Vzg Vig
Vrs Vs Vrs Vg
ATl— - Vig Vos - Vas Vs (Adb)
%) Vg Vs Vrs Vs
0 Vag Vre
Vs Vs
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where the inverse transformation is

Vi = Ay Vg (Asa)
where
VZS = Vls 0
Vrs Vrs
A.. = EE. Z‘Z_s X?i (ASb)
i3 Vs Vg Vg
- Vzs Vig = Vg Vzg Xg_s_
VI‘S VS VI'S VS VS
and where

1/2 1/2
v, (v§ + vg) and V= (v§ + v%) / (A6a)
Then, the following is obtained:

V'z + V'2 + V'2

S fexp - At T T2t T T3t
M,t3§2 cs e

P

dae

]1/2

12 v 2 12 ' ' '
x [v1t+ (Vat, vs) +viE| T avyg avpg ava  (ATb)

By transforming into spherical coordinates

Vlé = Vt cos O sin @

n

)
Vo = Vi cos @ (A7)
Vzi = Vg sin 6 sin @

The following is obtained:
2

V.
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This can be written as
C ps 2 2 .
dG)._st = I}Xp(-ut)]ut pR sin @ do 46 dpuy (A9)

where yu 1s the nondimensionalized velocity
V/C. To obtain the total collision rate for the
target molecules over all velocities, Equa-

tion (A9) must be integrated over ®, 8, and ut.
This can be integrated over 6 from O to 2x
and over ¢ from O to = to give

©) = 2B [oro(4)] b unp dug (1200

where

2 1/2 g4
uR)A=fﬂ(p,t+ p.g-ZpSp..t cos cp) / s_1r21_2 do
0
(A10b)
or
2 x
Mg * g/ I po >y
HR,A = (A11)
2 N
My +uS/3u Af p >
Integrating over uy from 0 to = to
obtain the total collision frequency for a sample

molecule moving at velocity ng through a
Maxwellian gas will then produce

L8
8 = i;n [%%:ﬁ. + (erf pg) (p,s + .z_it)] (a12)

The nondimensional mean free path is then found,
as discussed in [8), by dividing the sample-
molecule velocity by the total collision rate to
give
Ns Vs Hght

D ®

DpS {-,[%2_ [exp(-—ug)] + (erf pg) (us +§i—s)

(A13)

By using the difinition of Knudsen number given
by Equation (11) the following cen be written:

&=Kn21/2p_/-&\-l[.[(2@i§ﬂ. +
v AP/ L

VP
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+ (erf 1) (us+ zﬁ) (A14)
)

APPENDIX B

PICKING THE TARGET-MOLECULE COLLISION PARTNER

The velocity distribution of target molecules
that the sample molecule will collide with as dis-
cussed in {1] is given by

as _ [exp (-u.%)] p.%p.R sin ¢ dp d6 dpg (B1)
ol ()] 17 et g (o 52)

The distribution in 6 for the target molecules
is readily seen to be

fg d8 = 52% (B2)

Then, the 6 can be picked from this distribution
by
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6 = 2nRg (B3)

The distribution of for the target mole-
cules is obtained from the marginal distribution

4 [exp(* 2)] o un Qe

Xp -ué)] + :11/2 €rf uy (p.s+ El—)

Hsg,

Tt dug= [ (B4)
[S)

We can then pick from this distribution as before
_ T(tssny) * n(kssty) (B5)

[exp(—ug)] + ,11/ 2 (ert He) (us + 2—1‘3

where, when pg > U,

¥ (sshe) = -2ught EXP( )] +ug VX (67T 1)
25 (3] - e 3] o et

(B6)

and, when My < My s

Y(U-s:ut) = Y(U-s’P-s)

and

0= -z[exp(-w%)] <§ f14+ u%) L (87)
cfow ] (529)]

To find ¢ for the target molecule, the dis-
tribution of target molecules as a product of a
marginal distribution times a conditional distri-
bution can be written:

d@(p.t,q)) _
8

£ (1) £ [10e) (39)

Then, ¢ can be picked from the conditional dis-
tribution

1 N
2+u2_2uu cos (p) /2 sin d
gt Hg sHt 3
£(@[we) =

(B9)
R, A

Picking ¢ for a given pt 1is found as before
from

3
N o 0)*/% g -
P B 2 g o g g

(B10)

After picking o, pg, and 6, the velocity compo-
nents before transformation nrust be found. These
are cobtained from

V'it = ug Cp cos 0 sin @ (B1la)
V'gg = pg Cp cOs @ (B11b)
Viag = ug Cp sin 8 sin @ (Blle)

and from Fquation (A4)

V.
Vit = V'lt(v >+ V'2t<_1'> -V s.t(‘,‘-"’s—]'s-) (BlZa)
VI‘S VS
Vot = V' 14| =) + V1 -V ves 38\ (pizw)
2t 17— 2t v ST, v,
Vo =0+V' +V' 5 YI.S_ (B12¢)
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